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Abstract: Coating of a surface by droplet spreading plays an important role in many novas industrial processes, such
as plasma spray coating, ink jet printing, nano safeguard coatings and nano self-assembling. Data analysis of nano
and micro droplet spreading can be widely used to predict and optimize coating processes. In this article, we want to
select the most appropriate statistical distribution for spread data of aluminum oxide splats reinforced with carbon
nanotubes. For this purpose a large class of probability models including generalized exponential (GE), Burr X (BX),
Weibull (W), Burr III (BIII) distributions are fitted to data. The performance of the distributions are estimated using
several statistical criteria, namely , Akaike Information Criterion (AIC), Baysian Information Criterion (BIC), Log-
Likelihood (LL) and Kolmogorove-Smirnove distance. Also, the fitted plots of probability distribution function and
quantile-quantile (q-q) plots are used to verify the results of different criteria. An important implication of the present
study is that the GE distribution function, in contrast to other distributions, may describe more appropriately in these
datasets.
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1. INTRODUCTION

Spreading of droplets on solid surfaces is
important in a wide variety of applications
including plasma spray coating, ink jet printing,
DNA synthesis and etc [1].

Plasma spraying is one of the thermal spray
processes. The process is commonly used to
apply protective coatings on components to
shield them from wear, corrosion, and high
temperatures. Plasma coatings are built up by
agglomeration of splats formed by the impact,
spread, and solidification of individual particles.
Splat is the smallest unit of the microstructure of
plasma sprayed coatings. The properties of the
coatings are largely dependent on the splat
morphology and their stacking. The splat shape is
dependent on material properties of the powder;
impact conditions, e.g., impact velocity and
temperature; and substrate conditions, e.g.,
substrate topology and temperature.

Studies strongly indicate that CNTs (carbon
nano tubes) play a critical role in the splat
distribution and improvement [2]. Balani
research group has worked extensively on the
synthesis of CNT reinforced aluminum oxide
coatings by plasma spray technique [3-5]. Balani
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et al. obtained ~200% improvement in the elastic
modulus, 57% improvement in the fracture
toughness and 49 times enhancement in dry
sliding wear resistance by adding 8 wt.% CNTs in
Al,O5 coatings[3-5].

Hence, study of splat distribution is extremely
important for understanding micro sprayed
coatings that reinforced with CNT. Development
of splat distribution analyzes, which can predict
morphology of splats, can potentially reduce the
cost of the development of new coatings
considerably.

Ideally, this distribution analyzes and models
will allow us to adapt plasma-coating properties
to meet the requirements of individual
applications, without having to do extensive
experimentation. The analysis will also enable us
to predict, improve and optimize the design of
existing spraying guns.

Droplets impact and splat formation in plasma
spray researches can be broadly classified into
one of two studies: morphology of splats or
simulation of impact.

Many studies have been reported on the
morphological aspect of splats which suggest that
splat morphology is largely dependent on (i)
feedstock material properties, (ii) thermal and
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kinetic state of the in-flight particle and (iii)
substrate chemical state, roughness and
temperature [6, 7].

Elsebaei et al. presented a study on the
morphology of individual splats for different sets
of plasma operating parameters for the regular
yttria stabilized zirconia (YSZ) (particle size: 45—
100 pm) and the spherical agglomerate of YSZ
(agglomerate size: 2040 pm) synthesized from
the nano-YSZ powder particle [7]. Lima et al.
studied thermal spray coatings synthesized from
the nanostructured ceramic agglomerated powder
and concluded that it was necessary to avoid the
full melting of the agglomerates to preserve
nanostructure in the coating [8].

There exists a considerable literature
describing simulation of droplet impact and splat
spreading on a solid surface. Harlow and
Shannon [9] were the first to simulate this
phenomenon. They used a ‘“marker-and-cell”
(MAC) finite-difference method to solve the fluid
mass and momentum conservation equations,
while neglecting the effect of viscosity and
surface tension to simplify the problem. Trapaga
and Szekely [10] applied a commercial code,
FLOW-3D [11], that uses the Volume-of-Fluid
(VOF) method, to study impact of molten
particles. Liu et al. [12] employed another VOF
based code, RIPPLE [13], to simulate molten
metal droplet impact. Bussmann et al. published
a description of a three dimensional, finite-
volume, fixed-grid Eulerian model they
developed, which used a volume-tracking
algorithm to locate the droplet free surface during
its impact on a solid surface[14]. Pasandideh-
Fard et al. [[15]] studied the three-dimensional
model of Bussmann et al. [14] to include heat
transfer and solidification. Asadi et al. extended
numerical and analytical model of the inclined
impact of a droplet on a solid surface in a thermal
spray coating process [16]. Sedighi et al. studied
the process of a single nanodroplet impact onto a
surface with a molecular dynamics simulation
(MD) using the interactions between molecules
were represented by the Lennard-Jones (LJ)
potential. They found that the dynamic contact
angle and spreading diameter, as well as the
advancing and receding time periods, exhibit
strong dependence on droplet size [1, 17]. Asadi

et al. published a effect of contact angle on
droplet impact onto a solid surface. He uses a
molecular-kinetic theory in modeling contact
angle to prevent the spreading-and-recoiling
oscillations. Asadi [18] applied a modified
computational fluid dynamics and molecular
kinetic theory (CFD-MK) method to model the
impact of nano droplets on the flat surface. He
extended the model to include molecular kinetic
theory and simulated impact of nano droplets
falling on a flat plate.

However, in all previous studies the main
attention has been focused on the splat
morphology or simulation of splat formation. A
literature survey carried out by the author
indicated lack of published data on the CNT splat
distribution analyzing by statistical distributions.

In the present work, we analyze the data of
splats with carbon nanotube (CNT) addition,
obtained in Keshri and Agarwal literature [2].
Such a selection of splat dataset will allow us to
statistically analyze the spread property of a
range of materials i.e. sub-micron Al,O; powder
was spray dried (referred as A-SD) to sub-micron
Al O; with 4 wt.% CNTs (referred as A4C-SD)
and 8 wt% CNTs (referred as A8C-SD)
materials. For this purpose, we study the
spreading data using different distribution
functions. It is observed that the spreading data is
always positive and therefore, it is reasonable to
analyze of this data using the probability
distribution, which has support only on the
positive real axis. Thus, we have considered
different two-parameter distributions namely,
generalized exponential, Burr X, Weibull and
Burr III distributions. For choosing the best fitted
model to a given datasets, we use different
criteria such as AIC, BIC, LL and K-S distance.
For computing the different criteria, we estimate
the unknown parameters using the Maximum
Likelihood (ML) method. The rest of the paper is
organized as follows. In Section 2, we describe
the different probability models. The model
selection criteria are provided in Section 3.
Results of spread data are provided in Section 4.
Finally we conclude the paper in section 5.
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2. DIFFERENT PROBABILITIES MODELS
2. 1. Generalized Exponential Distribution

The two-parameter generalized exponential
(GE) distribution has been studied extensively by
Gupta and Kundu [19] .The two-parameter GE
distribution has the following density function

[ ap)=ap e 1-e")" a,f>0 (1)

Here o and P are the shape and scale parameters
respectively. Therefore, the maximum likelihood
estimators (MLEs) of a and  can be obtained by
maximizing the following log-likelihood function
with respect to the unknown parameters;

Lop(a, B

data) =nln(a) +nin(f) -
ﬁznlln(x,. )+(a - l)zn:ln(l ~g7%) ()
i=1 i=1

The MLEs of o and B, sayd and f§
respectively can be obtained as the solutions of

oL n g

—=—+Y Ln(l-e#)=0 3
oa « ; nl=e ™) o
L N, +(a—1)iﬂ=0 (4)
B BT 1

From (3), we have

n

iln(l—eiﬁx’) )

G=-

Substituting ¢ in (2), we obtain the profile
log-likelihood of B as

gB=L@a.p= —nln(znlln(l g P )] a5
i=1
i=1

i=1

Therefore, the MLE of B, can be obtained by
maximizing (6) with respect to B It is clear that
the maximum of (6) can be obtained as a fixed
point solution of the following equation;
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u(B)=p (7)

n C X eiﬁXi 3 Xi i
u(ﬂ)_r{ y m(l_eﬁ.ﬁ)[;(l—eﬁ"’)J+;(l—eﬁ*f) }

i=1

The solution of (7) can be obtained by a very
simple iterative procedure. Suppose we start with
an initial guess B then the next iterate B;, can be
obtained as B ;= u(B)), similarly, B,= u(B,)) and
so on. Finally, the iterative procedure should be
stopped when [B.;- Byl < € . Once we get the
MLE of § the MLE of a can be obtained from (5).

2. 2. Burr Type X Distribution

The Burr Type X (BX) distribution due to Burr
[20] has the probability density function (pdf) for
x>0 as

Fo; a.B)=2afx PV Q- Py o, 850

Here also a and B are the shape and scale
parameters  respectively. The  maximum
likelihood estimators of a and B can be obtained
by maximizing the log-likelihood function

data) < nln(a) +2nln(f) + iln(xi )-

i=l

Ly (a, B

Vs Zn:xf +(a- 1)2111(1 -y

i=1 i=1

with respect to the a and B. So, if ¢ and 5’
are the maximum likelihood estimators of a and
B respectively, then

n

> In(l-e ")
i=1

a

Similarly, the maximum likelihood estimator
of B can be obtained by maximizing the following
profile log-likelihood function as:
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g =L, p)= nln(—iln(l _e )’ )] g

2nin -2 x7 = In(1-e )

i=1 i=1

2. 3. Weibull Distribution

The two-parameter Weibull (W) distribution
for x > 0 has the following density function;

faa,p=afx" ™ a>0,8>0

Here o and B represent the shape and scale
parameters  respectively. The  maximum
likelihood estimators of o and B can be obtained
by maximizing the log- likelihood function

L, (a,ﬂ‘data) =nlna + nLnﬁ—ﬂina +(a —I)Z]nxi
i=1 i=1
with respect to the unknown parameters.

Therefore, if @ and § are the maximum
likelihood estimators of a and B respectively, then

Furthermore, the maximum likelihood
estimator of o can be obtained by maximizing the
profile log-likelihood of a as g(a)=L(a, /).

2. 4. Burr Type III Distribution

The Burr Type III (BIII) distribution also due
to Burr [20] is given by the pdf

fx, a.f)=afx P A+ x Py o g0

Here o and P are two shape parameters. The
maximum likelihood estimator of o and B say
and f can be obtained similarly.

3. MODEL SELECTION CRITERIA

It may be of interest for a given data to
determine which of the above mentioned
distributions provides the best fit. Therefore, in
this section, we provide different criteria for

selecting the best fitted distribution of these
datasets.

3. 1. Kolmogorov- Smirnov Distance

The Kolmogorov distance is one of important
distances between two distribution functions, say
F and G and has been used in many problems and
it can be described as follows;

D(F,G)= sup |F(x)-G(x)|

—00<x <0

To implement this procedure, a candidate from
each parametric family that has the smallest
Kolmogorov distance should be found and then
the different best fitted distributions should be
compared.

3. 2. Akaike’s Information Criterion

Consider a sample of independently identically
distributed (i.i.d.) random variables, X, ... X,

having probability density function /(x)=h. Let
us consider two rival models:

F*“ ={f”(.),aeMgR"}=(f) and

¢’ ={g’(LA<BcR'}=(2).

The KL information in favor of 4 against f& is
defined as

o h(X) | _ = h(x)
KL(h,f*)=E, [log f"(X)] = Lch(x) log o dx

We have KL(h,f”) > 0 and KL(h,f”) = 0,
imply that #= /", that is a=a,,. The KL divergence
is often intuitively interpreted as a distance
between the two probability measures, but this is
not mathematically a distance; in particular, the
KL divergence is not symmetric. The Akaike [21]
introduced the Akaike information criterion
(AIC) to select the best model under parsimony.
The goal of AIC is to minimize the KL
divergence of the selected model from the true
model. Notice that the important part of the KL
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divergence is Ey(log/“(X)) which has an
estimator as

1 n d
= log £ (x;)
nia

It can be considered as an estimator of the
divergence between the true density and the
model. Akaike introduced his criterion to model
selection as

Aic’ :—2ilog fo(x)+2p
i=1
Where, p is the number of parameters in the
model. Now between the two families F and G
choose family F if AICY < AIC? and choose
family G otherwise.

3. 3. Bayesian Information Criterion

The Bayesian information criterion (BIC) is
one of the important criterions for determining
the best model for a given data. One major
difference of this criterion is the different penalty
term that it uses. Thus BIC [22] is defined as

BIC! = —2ilog % (x,)+ plogn
i=1
The BIC is based on Bayesian probability and can
be applied to models estimated by the maximum

likelihood method and the most well-known
properties of BIC is asymptotic (loss) optimality and
consistency (in selection), respectively. So, we
choose family F' if BIC7 < BIC? ; otherwise we
choose family G.

3. 4. Maximum Likelihood Criterion

Cox’s test [23] as a modified log-likelihood
ratio statistic involves centering the log-
likelihood ratio statistic under the null
hypothesis. Cox’s statistic is given by

ClnB) =3 (% ()~ (g™ (x)
i=1

Here, @, and ,5’ » are maximum likelihood
estimators of a and P respectively. Choose the
family F if C > 0, otherwise choose G. It is
known that normalized of c(@, ,f,) has
asymptotically standard normal distribution [24].

4. RESULTS

For A-SD, A4C-SD and A8C-SD splat datasets
(see, Ref.[2]), first we presented the descriptive
statistics for three datasets in Table 1. It is
observed that the highest mean value is in A8C-
SD with a standard deviation of 1.3046. Also, we
have fitted different distributions and the
estimated parameter values, AIC values, BIC

Table 1. Descriptive statistics of spread datasets.

Dataset n Mean

SD Min Max

A-SD 90 28.65

1.4537 | 26.25 | 31.75

A4C-SD 92 34.75

1.4741 | 32.25 | 37.75

A8C-SD 92 43.28

1.3046 | 40.25 | 46.25

Table 2. Estimated parameters, K-S distances and AIC values for different distribution functions of A-SD.

Distribution Estimated parameters K-S AlIC BIC LL
GE a=3.775x10° | £=0.7061 0.1005 | 3.290x10* | 3.340x10* | -1.625x10”
BX a=5.1509x10* | £=0.11781 0.1320 | 4.509x10% | 4.559x10* | -3.328x10?
BIII a=9908x10° | S =6.8978 0.3622 | 4.510x10% | 4.560x10* | -2.235x10?
w a=5383x10* | F=22335 0.5486 | 6.442x10° | 6.492x10* | -3.201x10”
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Table 3. Estimated parameters, K-S distances and AIC values for different distribution functions of A4C-SD.

Distribution Estimated parameters K-S AIC BIC LL
GE a=3.398x10° | #=0.6435 | 0.1125 | 3.422x10%> | 3.472x10%> | —-1.691x10°
BX a=3274x10° | #=0.1045 | 0.1134 | 4.639x10%> | 4.690x10%> | —3.486x10>
BIII a=1.036x10" | #=6.54449 | 0.4070 | 5.032x10*> | 5.081x10° | —2.495x10?
W a=6.163x10" | #=2.09692 | 0.5925 | 7.054x10*> | 7.105x10*> | —3.507 x10°

Table 4. Estimated parameters, K-S distances and AIC values for different distribution functions of A8C-SD.

Distribution Estimated parameters K-S AIC BIC LL
GE a=1.124x10> | #=0.4883 0.1285 | 3.580x10> | 3.631x10> | -1.770x10°
BX a=52167x10° | #=0.0921 0.1295 | 4.545x10> | 4.596x10> | -3.525x10°
BIII a= 1319x107 | #=4.3961 0.4737 | 6.125x10> | 6.175x10> | -3.042x10?
W a=1.934x10" | #=04094 0.5845 | 10.463x10% | 10.514x10* | -5.212x10?

values, K-S distances and the log-likelihood (LL)
values are reported in Tables 2, 3 and 4
respectively. From Tables 2, 3 and 4, it is clear
that, GE is the best fitted model based on the
maximum log-likelihood values, minimum AIC
and BIC values or the minimum Kolmogorov
distance. We also plot the fitted probability
distribution function and the relative histogram
for different distributions and for all datasets in
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Fig. 1. The fitted probability distribution function (pdf) and
the relative histogram for A-SD data.

Figures 1, 2 and 3 respectively. For more
comparison purposes we present the q-q plots of
GE distribution for datasets 1, 2 and 3 in Figures
4-6 respectively. These plots show a strong
relationship supporting the appropriateness of the
GE distribution. For all datasets, it can be noted
that that shape parameter of the GE distribution is
very high. It shows that the mean, median and
mode are approximately equal to log o.
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|

¥
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34 35

Fig. 2. The fitted probability distribution function (pdf) and
the relative histogram for A4C-SD data.
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Fig. 3. The fitted probability distribution function (pdf) and
the relative histogram for A8C-SD data.
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Fig. 4. The g-q plot of A-SD data.
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Fig. 5. The g-q plot of A4C-SD data.
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Fig. 6. The g-q plot of ASC-SD data
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5. CONCLUSIONS

In order to describe the behavior of the spread
data of aluminum oxide splats reinforced with
carbon nanotubes., it is required to identify the
distribution, which best fit the data. So, the aim
of this paper is to compare different probability
models namely, Weibull, Burr X, generalized
exponential and Burr III for these datasets.
Different plots and statistical criteria were used to
identify the best fitted distribution for these
datasets. Using several statistical criteria, like
minimum Kolmogorov distance, minimum AIC
values, minimum BIC values and maximum log-
likelihood value, the GE distribution function
appears to be more appropriate statistical
distribution function in these datasets. The result
of our study is important in coating industries and
that is the droplet spread of spray coatings should
be described using several statistical criteria and
different distribution functions, as studied in the
present paper.
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