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Abstract: The present investigation delves into the friction stir welding of AA5052 and AZ31B alloys, examining the
effects of three distinct parameter configurations. A face-centered central composite design, structured to
incorporate full replications for comprehensive and reliable analysis, was employed. A pivotal element of this study
is implementing an advanced deep neural network (DNN) model. Characterized by its varied activation functions,
structural parameters, and training algorithms, this DNN model was adeptly configured to precisely predict the
tensile strength and microhardness of the welded joints. This comprehensive examination also included a
quantitative assessment of the parameter effects on joint microstructure and mechanical properties. Flawless welds
with exemplary surface characteristics were attained through a meticulously optimized set of parameters: a tool
rotation speed set at 825 rpm, a tool traverse speed of 15 mm/min, and a shoulder diameter of 18 mm. During the
welding process, the formation of intermetallic compounds, specifically Ali2Mgi7 and AlsMg2, was observed. An
exceptionally refined grain size of 2.23 um was observed in the stir zone, contributing to the joint's enhanced tensile
strength, measured at 180 MPa. The hardness of the specimen fabricated at the high rotational speed is more
elevated due to the brittle intermetallic compounds. The better mechanical properties are related to the reduction

and distribution of intermetallic compounds formed in the interface zone.
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1. INTRODUCTION

Contemporary automobile, aerospace, and
shipbuilding industries emphasize
lightweighting, emissions reduction, and
performance enhancement [1]. The European
Union, for instance, aims to reduce greenhouse
gas emissions by 40% by 2030, with a critical
insight that a 10% decrease in vehicle mass can
result in a 5-8% reduction in specific fuel
consumption [2, 3] Utilizing Al-Mg material
combinations succors lightweighting, enhances
fuel efficiency, and curtails environmental impact
[4]. Al-Mg joint applications span diverse
domains, including aerospace, automobile
manufacturing, marine engineering, airship
propulsion systems, atomic reactor materials, and
X-ray gear components [5].

Conventional fusion welding methods are often
futile when joining dissimilar materials due to
excessive heat input, solidification defects, macro
segregation, and the creation of fragile
intermetallic compounds (IMC) [6]. For instance,
the Al-Cu combination forms IMC phases and
eutectics at temperatures exceeding 1200°C [7].
The conventional welding of the Al-Mg

combination is plagued by issues like grain
coarsening, cracking, void formation, and IMC
formation at the interface [8].

Friction stir welding (FSW) is a highly effective
approach to dissimilar materials without
degrading properties [9]. In FSW, the plasticized
material flow and mechanical interlocking
enhance atomic diffusion and mitigate welding
defects, facilitating the formation of metallurgical
bonds between closely contacted metal surfaces
under high loads and shear strains [4],[8],[10].
Heidarzadeh et al. [11] elucidated that the transfer
of Fe and Cr from the tool and the creation of
nano-sized compounds of intermetallic hindered
the dislocation mobility during FSW of Cu-Zn
alloy, resulting in the formation of finer grains and
increased joint strength. Fazel et al. report that
material flow increases with tool rotation speed in
lap joints, albeit beyond a certain speed, which
leads to weak joints due to incomplete material
mixing [10]. Padmanaban et al. determined that
FSW of aluminum alloys achieves sound joints
with a high tensile strength at specific tool
rotation and shoulder diameter combinations
[12]. Other studies delve into factors affecting
FSW outcomes. Firdouzdor et al. observed the
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formation of interface intermetallic compounds
due to increased heat input at high rotation speeds
in Al-Mg friction stir-welded joints [13].
Malarvizhi et al. established that for dissimilar
FSW, especially Al to Mg combinations, slightly
higher heat input is necessary to facilitate proper
material mixing, advocating for a specific
shoulder diameter [14]. Fu et al. proposed a range
of parameters for defect-free joints between
Al-Mg [15].

Padmanaban et al. [22] also emphasized by using
the numerical method that material flow and heat
input increase with tool rotation speed and
shoulder diameter. Ratna Kishore et al. also found
that viscous dissipation generates maximum heat
at the harder material side [17]. Baghdadi et al.
obtained a defect-free weld between AZ31B &
Al6061-T6 with good mechanical properties at
TRS of 600 rpm and TTS of 20 mm/min by
placing Al on the retreating side [4]. Zhao et al.
explored the FSW of Al-Ti for various probe
lengths and found that the formation of fragile
IMC:s is high when the probe length is above the
optimum probe length (3.1 mm), resulting in the
fracture at the interface [18].

Studies suggest that high tool rotation and too low
transverse speed can result in IMC formation. In
contrast, a medium range of parameters is
preferred for sound welds [19]. Techniques such
as Taguchi and response surface methodology
have been extensively used for modelling the
FSW process. However, artificial neural networks
(ANNs) have demonstrated superiority in
creating nonlinear mathematical models and
establishing correlations between inputs and
outputsClick or tap here to enter text.[21, 22, 23].
Ai et al. [24] successfully established correlations
between input process parameters and geometric
characteristics of weld-seam in laser welding
using RBFNN. Pal et al. extended this success by
developing distinct RBFNN models to predict
welded plate distortion, with the most effective
model achieving a mere 5.56% prediction error
[25]. Pramod et al. [26] developed an ANN model
to forecast the wear properties of A171075/A1,0;
composites, and the model demonstrated strong
agreement with experimental findings. Tyagi.
et al. [27] evaluated the accuracy of ANN and
Response  Surface  Methodology  (RSM)
prediction models for forecasting the wear
properties of composites produced through FSP,
noting that both models closely approximated

experimental data.

In this research, the potential of ANNS is used to
simulate the effect of the FSW process
parameters, namely tool rotation speed, tool
traverse speed, and tool shoulder diameter on
Microstructure, Microhardness, and tensile
strength in Al-Mg alloy joints.

2. EXPERIMENTAL PROCEDURES

The study used commercially available AA5052
alloy and AZ31B alloy sheets (150 x50 x 4 mm).
The FSW process is carried out on a modified
vertical milling machine. Three HCHCR tools
with shoulder diameters of 15, 18, and 21 mm
were used. The length of the pin was 3.6 mm, and
the diameter of the pin was 4 mm. The tool
rotation speeds were 750, 825, and 900 rpm,
while the tool traverse speeds were 10, 15, and 18
mm/min. FSW was performed with AZ31B
placed on the advancing side (AS). The design
matrix of the experiment is presented in Table 1.
Specimens for optical microscopy were sliced
using an electrical discharge machine across the
perpendicular cross-section perpendicular to the
weld. The joints were prepared and swabbed with
different etching solutions (3 g C¢H3N3O7+ 5 ml
CH3COOH + 50 ml C;H6O + 10 ml distilled water
for the Mg side, and 1.5 ml HCL+ 1 ml H.F. + 2.5
ml HNOs + 95 ml distilled water for the Al side)
until clear and distinct etching was obtained.
Ethanol was used to clean the etched samples. The
weld's microstructures were examined using an
optical and scanning electron microscope (JSM-
6460 with Oxford energy dispersive X-ray
spectroscope system). The joint strengths were
measured using a universal testing machine
(TINIUS OLSEN H25KT) according to the
ASTM ES8 standard. The specimen dimensions
are shown in Fig. 1. Microhardness was measured
with a Vickers microhardness tester (Mitutoyo,
Model: MVK — H1) under a 200 g load applied
for 20 s.
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Fig. 1. Dimensions and specifications of tensile specimen
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Table 1. Design Matrix and Corresponding Testing Results

SI No TRS TTS SD Tensile strength (MPa) Microhardness (HV)
1 750 10 15 103 69
2 900 10 15 126 74
3 750 20 15 130 73
4 900 20 15 121 69
5 750 10 21 114 71
6 900 10 21 135 74
7 750 20 21 97 73
8 900 20 21 121 72
9 750 15 18 146 83
10 900 15 18 167 87
11 825 10 18 148 86
12 825 20 18 139 89
13 825 15 15 170 69
14 825 15 21 171 68
15 825 15 18 182 89
16 825 15 18 180 89
17 825 15 18 177 89
18 825 15 18 178 89
19 825 15 18 179 89

20 825 15 18 180 89

2.1. ANN

This investigation uses Deep Neural Networks
(DNN) to model and predict the mechanical
properties of Al-Mg dissimilar FSW joints. The
primary emphasis is placed on comprehending the
influence of diverse hyperparameters, including
activation functions, training algorithms, and
network structures, to enhance the accuracy of the
models. Fig. 2. shows the DNN architecture
[28, 29].

The experimental results were normalized for
standardization and improved training efficiency.
Then the datasets were divided into training
(75%), validation (15%), and testing (15%) sets.
Bayesian optimization is employed to optimize
the parameters of the neural network, including
the number and size of hidden layers, the transfer
function, and the training function. The
hyperparameters taken for Bayesian optimization
are defined in Table 2.
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Fig. 2. Deep Neural Network (DNN) Structure and Layer Composition

Table 2. Hyperparameter Configuration for Bayesian Optimization

Hyperparameter Range
Hidden layers 1-5
Hidden Neurons 5-15

Transfer functions

Tansig, Logsig & Poslin

Training function

Trainlm, Traingdx & Trainsg



http://dx.doi.org/10.22068/ijmse.3491
https://merc.iust.ac.ir/ijmse/article-1-3491-en.html

[ Downloaded from merc.iust.ac.ir on 2025-11-08 ]

[ DOI: 10.22068/ijmse.3491 ]

Padmanaban Ramasamy et al.

The training procedure is directed at minimizing
MSE, serving as the specified objective function
Fig. 3 delineates the evolution of the Bayesian
optimization process with the algorithm striving
to diminish MSE. Two distinct trajectories are
depicted in the graph. The blue trajectory
chronicles the smallest value of the objective
function that has been encountered after each
function evaluation. Notably, this trajectory
descends stepwise with the identification of each
new, lower minimum. The green trajectory
embodies the algorithm's predictive assessment
regarding the potential lowest point (nadir) of the
objective function. As the process matures, a
convergence is observed between the estimated
and actual minimum objectives, underscoring a
burgeoning confidence in the optimization's
prediction of the minimum's locus.
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Fig. 3. Evolution of Bayesian Optimization for MSE
Reduction

A heatmap of the mean squared error (MSE) for
various configurations of a neural network is
shown in Fig. 4. The results presented in this
heatmap serve as a basis for selecting the best-
performing neural network configuration for
further testing or deployment. As determined by
Bayesian optimization, the best-performing
comprises a neural network architecture with four
hidden layers, each consisting of 11 nodes. The
selected transfer function is 'poslin' (positive
linear) for the hidden layers, and the training
function is ‘'trainlm' (Levenberg-Marquardt
backpropagation). Optimized hyperparameters
resulting from Bayesian optimization are used to
build the neural network, and then the neural
network is trained. The trained artificial neural
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network (ANN) is assessed by measuring its
performance using the RMSE and R? values. The
performance plot is shown in Fig. 5 shows the
mean squared error (MSE) on a logarithmic scale
for three different datasets training, validation,
and test over 22 training epochs. The training
data's error (blue line) consistently decreases,
showing the network is learning from the training
data. The validation data's error (green line)
decreases until epoch 16, where it reaches its
minimum MSE of 37.0807, suggesting the
optimal stopping point to prevent overfitting. The
test data's error (red line) shows the network's
performance on unseen data, which follows a
similar trend to the validation data, providing
insight into the model's generalization capability.
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Fig. 4. MSE Heatmap for Hidden Layer
Configurations

Best Validation Performance is 37.0807 at epoch 16
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Fig. 5. Performance Evaluation of Trained Deep
Neural Network (DNN) using RMSE and R? Values

Fig. 5 encapsulates the training phase's dynamics,
indicating effective learning while also
suggesting the onset of overfitting past the 16™
epoch, as seen by the upturn in validation error.
This inflection point is critical for model
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selection, as it marks the transition from learning
to overfitting, emphasizing the importance of
early stopping in neural network training. The
efficiency of the neural network was assessed
using RMSE, R?, and the correlation coefficient
(R). These metrics are summarized in Table 3.

3. RESULTS AND DISCUSSION

Fig. 6 shows the regression plot of the network
performance. The overall R-value, a correlation
measure, reached an impressive 0.97203.
Moreover, individual values for training (0.998),
validation (0.99), and test (0.89) datasets

demonstrate the generalization capability of the
model. The comparison of experimental and
predicted tensile strengths and hardness is
presented in Fig. 7 (a & b). The model predictions
closely align with the experimental values, and
hypothesis tests indicate that the experimentally
determined tensile strength and the model
predictions exhibit statistically equivalent means.
Specifically, the apex tensile strength, both
predicted and experimentally found, stands at
179.26 MPa, corresponding to a TRS of 825 rpm.
Conversely, the experimental nadir of tensile
strength is noted at 97 MPa, with the model
predicting a slightly higher minimum of 103 MPa.

Table 3. Metrics for Assessing Neural Network Efficiency

Performance evaluation Parameter Value
RMSE 13.2877 & 4.10232
R? 0.94858
Correlation Coefficient (R) 0.97203

Training: R=0.99868
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Fig. 6. Comparison of DNN Predicted Outputs with Actual Values across Training, Validation, Testing, and
Target Sets
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The mean of the experimentally tensile strength,
which is 148.2 MPa, is closely mirrored by the
model's prediction of 152.01 MPa.

The model predicts a maximum microhardness
value of 90 HV, which matches the experimental
result achieved for the joint created with a tool
rotation speed of 825 rpm. The lowest
microhardness value obtained from experiments
is 69 HV, while the lowest Microhardness
predicted is 68 HV. The mean Microhardness of
the joints is found as 79.55 HV, while the
predicted average Microhardness is 81.12 HV.

Tensile ol;onmh Actual vs Predicted Values

o Actual Values
~ &  Predicted Values

180

3.1. Effect of Parameters on Tensile Strength
and Microhardness

The investigation, illustrated in Figures 8 to 14,
provides insights into the intricate relationships
between parameters and their effects on the joints'
tensile strength (TS) and Microhardness (MH). Fig.
8 shows that an 18 mm shoulder diameter, with a
TRS increase from 800 to 900 rpm and lower TTS,
optimally achieves a peak tensile strength of
190MPa. However, Fig. 8 reveals that beyond a
certain point, TS diminishes due to challenges such
as suboptimal material flow and excessive heat.
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Fig. 7. Comparison of Experimental and Predicted (a) Tensile Strength and (b) Micro Hardness
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Fig. 8. Influence of TRS and TTS on Tensile Strength Across Various SD (a) 15 mm, (b) 18 mm, and (c) 21 mm

Fig. 9. Microstructures of Stir Zone at TTS of 15 mm/min, SD of 18 mm, and TRS of a) 750 rpm, b) 825 rpm, c)
900 rpm
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Examining the impact of TRS on stir zone grain
size (Fig. 9), we observe notable grain coarsening
within the AZ31B nugget at high rotation speeds,
ascribed to the annealing effect caused by heat
generated during welding. Considering the
microstructures from regions 1, 2, and 3
corresponding to 750 rpm, 825 rpm, and 900 rpm
respectively, it is evident that grain coarsening is
more pronounced in the microstructure obtained
at 900 rpm. The increase in temperature of the
nugget, caused by increased frictional heat and
plastic deformation during FSW, leads to the
expansion of grains as the TRS (tensile residual
stress) increases. These findings are in alignment
with Firouzdor et al., who reported that joint
strength escalates with an increase in traverse
speed up to a certain threshold, beyond which a
reduction is experienced [ 13]. This phenomenon's
underlying mechanism is grain coarsening and
premature aging processes. Microhardness, as
depicted in Fig. 10, exhibits a similar trend,
increasing with rising TRS and TTS until a
threshold, beyond which it declines due to heat
input variations affecting the weld's hardness
compared to the base material. The highest
Microhardness, around 90 HV, is achieved with
an 18 mm tool shoulder diameter. Initially, as SD
increases from 15 mm to 18 mm, the
microhardness increases with increasing TRS and
TTS due to enhanced material flow and grain
refinement facilitated by higher heat input.

This leads to increased dislocation density and
grain boundary strengthening, consequently
increasing the microhardness. However, when SD
further increases to 21 mm, although the TRS and
TTS remain in the range associated with higher
hardness, the peak hardness is achieved at
relatively lower TRS and TTS values compared to
the maximum observed for the 18 mm SD.

This phenomenon can be attributed to the

MH Value MH Value
67 68 69 70 " 72 73 74 82 83 84 85 86

1 N

760 780 800 820 840 860 880 900

TRS TRS

(a) (b)

interplay of heat input variations and material
flow dynamics. At 21 mm SD, the increased heat
input might result in excessive thermal softening,
counteracting the beneficial effects of grain
refinement, and thereby limiting the hardness
improvement. Fig. 9 further emphasizes that
samples with reduced tool rotation and traverse
speeds display hardness fluctuations due to
diverse constituents and the creation of IMCs in the
area where stirring occurs. Brittle intermetallic
compounds increase hardness, while improper heat
input during welding can result in the
recrystallization of Al/Mg grains, potentially
lowering hardness. Fig. 11 & Fig. 12 explore the
combined impact of tool transverse speeds (TTS)
and tool shoulder diameters (SD) on tensile
strength and Microhardness. Initial increases in
TTS and SD improve tensile strength up to a
moderate level, but further increments lead to a
decline. Microhardness, correlated with welding
speed, initially increases but reverses beyond
specific TTS and SD thresholds. Fig. 13 & Fig. 14
delve into the intricate influence of tool rotation
speeds (TRS), shoulder diameters (SD), and
constant tool transverse speeds (TTS) on tensile
strength and Microhardness. Moderate values of
TRS and SD initially boost tensile strength, but a
subsequent decline occurs with further increases.
Microhardness reaches its maximum (90 HV)
with elevated TRS, moderate SD, and high TTS.

3.2. The Formation of IMCs and its Impact on
the Characteristics.

The interface microstructures of the joints
produced under parameter combinations
categorized as low (TRS= 750 rpm, TTS= 10
mm/min, SD= 15 mm), middle- (TRS= 825 rpm,
TTS= 15 mm/min, SD= 18 mm), and high (TRS=
900 rpm, TTS= 20 mm/min, SD= 21 mm) are
illustrated in Fig. 15.

MH Value
87 88 89 90 68 70 72 74 76 78 80

BT T Ta——

760 780 800 820 840 860 880 900
TRS

(©)

Fig. 10. Influence of TRS and TTS on Microhardness across Various SD (a) 15 mm, (b) 18 mm, and (c) 21 mm
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Fig. 11. Influence of TTS and SD on Tensile Strength across Various TRS (a) 750 rpm, (b) 825 rpm, and (c) 900
rpm

MH Vaiue MH Vaiue MH Value
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Fig. 12. Influence of TTS and SD on Microhardness for TRS of (a) 750 rpm, (b) 825 rpm, and (c) 900 rpm.
TS Value TS Value TS Value
10 120 130 140 150 160 170 180 140 145 150 155 160 165 170 175 180 122 124 126 128 130 132 134 136 138 140 142
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Fig. 13. Influence of SD and TRS on Tensile strength for TTS of (a) 10 mm/min, (b) 15 mm/min, and (c) 20
mm/min
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Fig. 14. Influence of SD and TRS on Microhardness for TTS of (a) 10 mm/min, (b) 15 mm/min, and (c) 20

mm/min
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The interface microstructure exhibits a banded
configuration, characterized by two bands with
disparate contrasts. The lamellae consist of
distinct phases formed during the turbulent
amalgamation of two alloys, resulting in an
intercalated  structure. Plastic ~deformation
induces the formation of alternating layers of Mg
and Al deposits in the weld center. The optimum
intercalated structure is achieved with the middle
parameter combination, whereas other parameter
sets exhibit reduced intercalated and banded
structures. Analysis of the micrograph suggests
that the heat generated during this specific
parameter combination is conducive to the even
distribution of intermetallic elements and mutual
diffusion of Al and Mg atoms.

The interface microstructure shown in Fig. 16(a)
& (b) highlights the existence of different
intermetallic phases. EDS line analysis was
performed over the interface zone of the joint
made with the medium parameter combination to
determine the phases generated during FSW. Fig.
17 shows two contrasts for two different bands
that form the Microstructure. The EDS conveys
that the intermetallic compounds Al;xMg;7; and
AlsMg; are developed during welding.

3.3. Quantitative Analysis of Microstructure
and Influence on Properties

A quantitative study of the microstructures of
joints welded with low, middle, and high
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Fig. 16. Interface Microstructures iIighlighti
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parameters was performed to explore the change
in grain size. The micrographs (20 x 20 pm) used
for the analysis are shown in Fig. 18. The number
of grains in the micrograph measured using the
line intercept methods is given in Table 4.

The results show that the grain size for middle
parameter combinations is 2.23 pum. The grain
sizes for the high and low parameter
combinations are 10.5 um and 5.58 um,
respectively. The intermediate  parameter
combination significantly reduces the average
grain size due to the occurrence of new grains
resulting from the heating and plastic deformation
of the tool. Azizieh. et al. mention that larger grain
size results from the rise in peak temperature,
and grain size remains constant above a
particular temperature. This is due to the
increased liquid content, which decreases
frictional heating [19].

As per the Hall-Petch equation, a grain size
decrease increases strength and hardness. The
reduction in particle size will enhance the
hardness of the material. In this scenario, the
presence of fine grain in the stir zone leads to a
significant increase in Microhardness. The
sample of the middle parameter has a grain size
of 2.33 um, a tensile strength of 180 MPa, and a
Microhardness of 88 HV. The grain size for the
high parameter combination is 10.5 um, resulting
in a fall in tensile strength to 120 MPa and a
decrease in hardness to 68 HV.
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Fig. 17. EDS analysis of sample welded with medium parameters

" i by L \ 2 o T & Y
Fig. 18. Microstructures of Friction Stir Welded Joints: (a) 750 rpm, 10 mm/min, 15 mm, (b) 825 rpm, 15
mm/min, 18 mm, and (c¢) 900 rpm, 20 mm/min, 20 mm

Table 4. Grain size and count for different parameter combinations

Parameters combination Number of grains Grain Size (um)
Low 153 5.58
Middle 879 2.331
High 43 10.5

4. CONCLUSIONS

Friction stir welding has effectively joined
alloys AAS5052 to AZ31B wusing various
combinations of tool rotation speeds, tool traverse
speeds, and shoulder diameters. The joint
qualities were investigated using microstructural
characterization, tensile testing, and
microhardness studies. A neural network model
was developed to forecast the tensile strength and
Microhardness in friction stir welding. The
observations are summarized below:

e Deep neural network (DNN) was employed to

0 S0

forecast the tensile strength and microhardness
of the joint. Hyperparameter optimization was
performed using Bayesian optimization. The
overall coefficient of correlation, denoted as R,
is 0.97. The outcomes derived from employing
Artificial Neural Networks (ANN) are closely
aligned with the results gained through
experimental testing. The little disparity
between the forecasted artificial neural network
(ANN) model and empirical data indicates the
dependability of this model.

e The Microstructure of the base material and
joints were examined. The formation of


http://dx.doi.org/10.22068/ijmse.3491
https://merc.iust.ac.ir/ijmse/article-1-3491-en.html

[ Downloaded from merc.iust.ac.ir on 2025-11-08 ]

[ DOI: 10.22068/ijmse.3491 ]

Iranian Journal of Materials Science and Engineering, Vol. 21, Number 2, June 2024

lamellae, which is made of distinct phases due
to the improper mixing of the alloys, results in
the formation of a banded structure. Interface
microstructure demonstrates the existence of
intermetallic compounds.

o At greater tool rotation speeds, annealing leads
to substantial enlargement of the grain size. The
AZ31B base material has a grain size of 10 um.
Particles with a diameter of 2.23 pm are
produced by using a rotational speed (TRS) of
825 rpm, a traverse speed (TTS) of 15 mm/min,
and a sample distance (SD) of 18 mm.

e The tensile test results show that the medium
parameter combination results in a joint tensile
strength of 180 MPa, while the tensile strength
is low for high and low parameter combinations.

o The hardness of the specimen fabricated at the
high tool rotational speed is high. Due to
excessive liquation and inadequate material
flow, no acceptable welds could be produced
when TRS was extremely high or extremely
low.

TABLE OF ABBREVIATIONS

Abbreviation Meaning
DNN Deep Neural Network
ANN Artificial Neural Network
TRS Tool Rotation Speed
TTS Tool Transverse Speed
SD Shoulder Diameter
TS Tensile Strength
MH Microhardness
IMC Intermetallic Compounds
REFERENCES

[1]. Mendes, N., Neto, P., Loureiro, A,
Moreira, A.P., ‘“Machines and control
systems for friction stir welding: A
review.” Mater Des. 2016, 90, 256—265.

[2]. Joost, W.J., “Reducing vehicle weight and
improving U.S. energy efficiency using
integrated computational materials
engineering”. JOM. 2012, 64, 1032-1038.

[3]. Joost, W.J., Krajewski, P.E., “Towards
magnesium alloys for high-volume
automotive applications”. Scr Mater. 2017,
128, 107-112.

[4]. Baghdadi, A.H., Mohamad Selamat, N.F.,
Sajuri, Z., “Effect of tool offsetting on
microstructure and mechanical properties
dissimilar friction stir welded Mg-Al

[5].

[6].

[7].

[8].

[9].

[10].

[11].

[12].

[13].

alloys”. In: IOP Conference Series:
Materials Science and Engineering.
Institute of Physics Publishing, 2017.
Raval SK, Judal KB., “Recent advances in
dissimilar  friction stir welding of
aluminum to magnesium alloys”. Materials
Today: Proceedings, 22, 2020, 2665-75.
Bisadi, H., Tavakoli, A., Tour Sangsaraki,
M., Tour Sangsaraki, K., “The influences
of rotational and welding speeds on
microstructures and mechanical properties
of friction stir welded AI5083 and
commercially pure copper sheets lap
joints”. Mater Des., 2013, 43, 80-88.
Zhang, J., Shen, Y., Yao, X., Xu, H., Li, B.,
“Investigation on dissimilar underwater
friction stir lap welding of 6061-T6
aluminum alloy to pure copper”. Mater
Des., 2014, 64, 74-80.

Liu, Z., Ji, S., Meng, X., “Joining of
magnesium and aluminum alloys via
ultrasonic assisted friction stir welding at
low temperature”. International Journal of
Advanced Manufacturing Technology.,
2018, 97, 4127-4136.

Kumar Rajak, D., Pagar, D.D., Menezes,
P.L., Eyvazian, A., “Friction-based
welding processes: friction welding and
friction stir welding”, Journal of Adhesion
Science and Technology, 2020, 34(1), 1-
25.

Fazel-Najafabadi, M., Kashani-Bozorg,
S.F., Zarei-Hanzaki, A., “Dissimilar lap
joining of 304 stainless steel to CP-Ti
employing friction stir welding”. Mater
Des., 2011, 32, 1824-1832.

Heidarzadeh, A., Radi, A., Yapici, G.G,,
“Formation of nano-Sized compounds
during friction stir welding of Cu-Zn
alloys: effect of tool composition”. Journal
of Materials Research and Technology.,
2020, 9, 15874-15879.

Padmanaban, R., Balusamy, V., Vaira
Vignesh, R., “Effect of friction stir welding
process parameters on the tensile strength
of dissimilar aluminum alloy AA2024-T3
and AA7075-T6. Journal of Engineering
Science and Technology”, Materwiss.
Werksttech, 2020, 51, 17-27.

Firouzdor V, Kou S., “Al-to-Mg friction
stir welding: effect of material position,
travel speed, and rotation speed”.

el o


http://dx.doi.org/10.22068/ijmse.3491
https://merc.iust.ac.ir/ijmse/article-1-3491-en.html

[ Downloaded from merc.iust.ac.ir on 2025-11-08 ]

[ DOI: 10.22068/ijmse.3491 ]

Padmanaban Ramasamy et al.

[14].

[15].

[16].

[17].

[18].

[19].

[20].

[21].

[22].

12

Metallurgical and Materials Transactions
A., 2010, 41, 2914-35.

Malarvizhi, S., Balasubramanian, V.,
“Influences of tool shoulder diameter to
plate thickness ratio (D/T) on stir zone
formation and tensile properties of friction
stir welded dissimilar joints of AA6061
aluminum-AZ31B magnesium alloys”.
Mater Des., 2012, 40, 453-460.

Fu, B., Qin, G,, Li, F., Meng, X., Zhang, J.,
Wu, C., “Friction stir welding process of
dissimilar metals of 6061-T6 aluminum
alloy to AZ31B magnesium alloy”. J Mater
Process Technol., 2015, 218, 38-47.
Padmanaban, R., Ratna Kishore, V.,
Balusamy, V., “Numerical simulation of
temperature distribution and material flow
during friction stir welding of dissimilar
aluminum  alloys”. In: Procedia
Engineering, 2014, 854-863.

Kishore, V.R., Arun, J., Padmanabhan, R.,
Balasubramanian, V., ‘“Parametric studies
of dissimilar friction stir welding using
computational fluid dynamics simulation”.
International  Journal of  Advanced
Manufacturing Technology, 2015, 80, 91—
98.

Zhao, H., Yu, M., Jiang, Z., Zhou, L., Song,
X.  “Interfacial microstructure and
mechanical properties of Al/Ti dissimilar
joints fabricated via friction stir welding”.
J Alloys Compd., 2019, 789, 139-149.
Azizieh, M., Sadeghi Alavijeh, A., Abbasi,
M., Balak, Z., Kim, H.S., “Mechanical
properties and microstructural evaluation
of AA1100 to AZ31 dissimilar friction stir
welds”. Mater Chem Phys., 2016, 170,
251-260.

Song, Q., Wang, H., Ji, S., Ma, Z., Jiang,
W., Chen, M., “Improving joint quality of
hybrid friction stir welded Al/Mg
dissimilar alloys by RBFNN-GWO
system”. J Manuf Process., 2020, 59, 750—
759.

Khoshaim, A.B., Elsheikh, A.H,,
Moustafa, E.B., Basha, M., Mosleh, A.O.,
“Prediction of residual stresses in turning
of pure iron using artificial intelligence-
based methods”. Journal of Materials
Research and Technology., 2021, 11,
2181-2194.

Quarto, M., Bocchi, S., Giardini, C.,

& &

[23].

[24].

[25].

[26].

[27].

[28].

[29].

D’urso, G. “An ANN-based approach for
the friction stir welding process intrinsic
uncertainty”. In: Materials Research
Proceedings., 2023, 1067-1074.

Prudhvi Sai, P., Roshan Balu, T.M.B.,
Vaira Vignesh, R., Bhaskara Sastry, C.V.,
Padmanaban, R., “Artificial neural
network models for predicting the
corrosion  behavior of friction stir
processed AAS5083”. In: Materials Today:
Proceedings., 2021, 7215-72109.

Ai, Y., Shao, X., Jiang, P., Li, P., Liu, Y.,
Yue, C., “Process modelling and parameter
optimization using radial basis function
neural network and genetic algorithm for
laser welding of dissimilar materials”.
Appl Phys A Mater Sci Process., 2015,
121, 555-569.

Pal, S., Pal, SK., Samantaray, AK., “
Radial basis function neural network model
based prediction of weld plate distortion
due to pulsed metal inert gas welding”.
Science and Technology of Welding and
Joining, 2007, 12, 725-731.

Pramod R, Kumar GV, Gouda PS, Mathew
AT., “A study on the AI203 reinforced
Al7075 metal matrix composites wear
behavior using artificial neural networks”.
Materials Today: Proceedings. 2018 5,
11376-85.

Tyagi, L., Butola, R., Kem, L., Singari,
R.M., “Comparative Analysis of Response
Surface Methodology and Artificial Neural
Network on the Wear Properties of Surface
Composite Fabricated by Friction Stir
Processing”. J Bio Tribocorros.2021, 7.
Wu, S., Ren, J., Zhou, X., Cao, G., Liu, Z.,
Yang, J., “Comparisons of Different Data-
Driven  Modeling  Techniques  for
Predicting Tensile Strength of X70
Pipeline Steels”. Transactions of the Indian
Institute of Metals., 2019, 72, 1277-1288.
Deng J, Sun J, Peng W, Hu Y, Zhang D.,
“Application of neural networks for
predicting hot-rolled strip crown”. Applied
Soft Computing., 2019, 78, 119-31.


http://dx.doi.org/10.22068/ijmse.3491
https://merc.iust.ac.ir/ijmse/article-1-3491-en.html
http://www.tcpdf.org

