Search published articles



Sajad Ghaemifar, Hamed Mirzadeh,
Volume 20, Issue 4 (12-2023)
Abstract

Phase transformations and the evolution of hardness during elevated-temperature annealing of Inconel 718 superalloy manufactured by the laser powder bed fusion (L-PBF) were investigated. The microstructural evolution, elemental analysis, phase formation, and hardening were characterized by scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, and Vickers indentation test, respectively. It was observed that the effect of annealing treatments is directly governed by the annealing parameters (i.e. time and temperature), for which the hardness measurement as a fruitful and convenient tool can reveal this effect. The increase of the hardness, which was obtained by the annealing (aging) treatments at the temperature range of 800-900 °C, indicated precipitation of the Ni3Nb γ˝ strengthening phase; while owing to the coarsening of precipitates as a results of overaging at this temperature range, the hardness decreased. For instance the length and aspect ratio of precipitates in the aged sample at 800 °C for 1 h is 67.14 nm and 0.32, respectively; while these values in the aged sample at 800 °C for 8 h is 78.34 nm and 0.44, respectively. On the other hand, the decrease of the hardness at temperatures of 950 and 1000 °C was attributed to the decrease of dislocation density in conjunction with the Ni2Nb Laves phase dissolution. Hence, it is crucial to determine the annealing parameters according to the required microstructure and properties.
Adeel Hassan,
Volume 20, Issue 4 (12-2023)
Abstract

Friction stir additive manufacturing (FSAM) is a variant of sheet lamination additive manufacturing used to produce large, near-net-shaped 3D parts. Unlike traditional friction stir lap welding, FSAM introduces a new plate to one that is already joined, with the effective area limited to the nugget zone. The present study focuses on exploring the microstructure and microhardness around the nugget zone in a five-plate AA 7075-T651 laminate synthesized at 1000 rpm and 35 mm/min. Microhardness increased vertically in the weldment NZ, reaching 143 HV in the top layer with 2.0 μm fine equiaxed grains. The grains on the advancing and retreating sides were coarser compared to the nugget zone. A W-shaped microhardness profile appeared across layer interfaces. These findings contribute significantly to advancing the FSAM technique, particularly in manufacturing multi-layered, multi-pass laminates.
Amin Rezaei Chekani, Malek Naderi, Reza Aliasgarian, Yousef Safaei-Naeini,
Volume 21, Issue 0 (3-2024)
Abstract

This paper presents the novel fabrication method of a three-dimensional orthogonally woven (3DW) C/C-SiC-ZrB2 composite and the effects of ZrB2 and SiC particles on microstructure and the ablation behavior of the C/C–SiC–ZrB2 composite are studied. C/C–SiC–ZrB2 composite was prepared by isothermal-chemical vapor infiltration (I-CVI), slurry infiltration (SI), and liquid silicon infiltration (LSI) combined process. Pyrolytic carbon (PyC) was first infused into the 3DW preform by I-CVI at 1050°C using CH4 as a precursor in order to form a C/C preform with porous media. The next step was graphitization at 2400°C for 1hr. Then  ZrB2 was introduced into 3DW C/C preform with a void percentage of 48 by impregnating the mixture of ZrB2 and phenolic resin, followed by a pyrolysis step at 1050°C. A liquid Si alloy was infiltrated, at 1650 °C, into the 3DW C/C composites porous media containing the ZrB2 particles to form a SiC–ZrB2 matrix. An oxyacetylene torch flame was utilized to investigate The ablation behavior. ZrB2 particles, along with the SiC matrix situated between carbon fiber bundles, form a compact ZrO2-SiO2 layer. This layer acts as a barrier, restricting oxygen infiltration into the composite and reducing the erosion of carbon fibers. The findings were supported by FESEM imaging and further confirmed through x-ray diffraction and EDS analysis. The addition of ZrB2 to the C/C-SiC composite resulted in a lower mass and linear ablation rate; 2.20 mg/s and 1.4 µm/s respectively while those for C/C-SiC composite were 4.8 mg/s and 6.75 µm/s after ablation under an oxyacetylene flame (2500°C) for 120 s.
 
Tumelo Moloi, Thywill Cephas Dzogbewu, Maina Maringa, Amos Muiruri,
Volume 21, Issue 3 (9-2024)
Abstract

The stability of microstructure at high temperatures is necessary for many applications. This paper presents investigations on the effect of changes in temperature on the microstructures of additively manufactured Ti6Al4V(ELI) alloy, as a prelude to high temperature fatigue testing of the material. In the present study, a Direct Metal Laser Sintering (DMLS) EOSINT M290 was used to additively manufacture test samples. Produced samples were stress relieved and half of these were then annealed at high temperatures. The samples were then heated from room temperature to various temperatures, held there for three hours and thereafter, cooled slowly in the air to room temperature. During tensile testing, the specimens was heated up to the intended test temperature and held there for 30 minutes, and then tensile loads applied to the specimens till fracture. Metallographic samples were then prepared for examination of their microstructures both at the fracture surfaces and away from them. The obtained results showed that changes in temperature do have effects on the microstructure and mechanical properties of Ti6Al4V(ELI) alloy. It is concluded in the paper that changes in temperature will affect the fatigue properties of the alloy.
Mohammad Derakhshani, Saeed Rastegari, Ali Ghaffarinejad,
Volume 22, Issue 1 (3-2025)
Abstract

In this research, the morphology of the Ni-W coating was modified by adding graphene oxide (GO) nanosheets in such a way that a foam-like structure with high porosity and holes in the form of intertwined tunnels was obtained. Different amounts of GO nanosheets were added to the plating bath and the resulting coating was examined. In order to estimate the electrochemically active surface area, the cyclic voltammetry (CV) test was used. Moreover, the linear polarization test (LSV) and chronoamperometry in 1 M NaOH were conducted to investigate the electrocatalytic activity for the hydrogen evolution reaction (HER). It was found that by adding 0.4 g/L GO to the electroplating bath, the electrocatalytic properties are doubled and the active surface of the electrode is significantly increased.
 
Amin Rahiminejad, Mojgan Heydari, Fariba Tajabadi,
Volume 22, Issue 1 (3-2025)
Abstract

Targeted drug delivery systems have been developed to overcome the disadvantages of conventional drug delivery systems and folate is one of the targeting molecules that has received attention in recent years. The attachment of this molecule to the surface of niosomal carriers has been achieved using Castor oil as an intermediate molecule. We synthesized caster folate (CF) and incorporate to noisome structure as biocompatible component for targeted delivery of anticancer drug Doxorubicin. This research studies the novelty of castor folate ester in the scope of niosome-based drug delivery systems. The aim was to investigate the feasibility of manufacturing and evaluating a niosomal carrier containing the drug doxorubicin hydrochloride (DOX) and its targeting by the combination of CF. The results of Fourier Transform Infrared Spectroscopy (FTIR) confirm chemical bounding between folic acid and castor oil. SEM showed good morphology with spherical structure of niosomes. These niosomes have particles size of 330 to 538 nm for different samples. Also, zeta potential was -28 to -40 mV that results good stability. The addition of CF to niosomal samples increased wettability and drug loading efficacy and along with DLS and zeta potential results confirms the folate impact on surface hydrophilicity of niosome spheres. The prepared formulations increased the effectiveness of doxorubicin on L929 fibroblast cells. The proposed biocompatible component showed the role of CF in the architectural integrity of niosomal lipid bilayers.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb